A Practical Approach for Wall Shear Stress Topological Skeleton Analysis Applied to Intracranial Aneurysm Hemodynamics

Abstract

The physiopathological role of Wall Shear Stress (WSS) in intracranial aneurysm development/rupture and the action of contraction/expansion played by shear forces on vessel wall make topological skeleton analysis of the WSS vector field of great interest. Here we present a practical way to analyze WSS topological skeleton through the identification and classification of WSS fixed points and manifolds. The method is based on the calculation of the WSS vector field divergence and Poincarè index, and it is here successfully applied to a dataset computational hemodynamic models of intracranial aneurysms

    Similar works