On stabilization of parameterized macromodeling

Abstract

We propose an algorithm for the identification of guaranteed stable parameterized macromodels from sampled frequency responses. The proposed scheme is based on the standard Sanathanan-Koerner iteration in its parameterized form, which is regularized by adding a set of inequality constraints for enforcing the positiveness of the model denominator at suitable discrete points. We show that an ad hoc aggregation of such constraints is able to stabilize the iterative scheme by significantly improving its convergence properties, while guaranteeing uniformly stable model poles as the parameter(s) change within their design range

    Similar works