We present the first results of the unbiased survey of the L1157-B1 bow
shock, obtained with HIFI in the framework of the key program Chemical Herschel
surveys of star forming regions (CHESS). The L1157 outflow is driven by a
low-mass Class 0 protostar and is considered the prototype of the so-called
chemically active outflows. The bright blue-shifted bow shock B1 is the ideal
laboratory for studying the link between the hot (around 1000-2000 K) component
traced by H2 IR-emission and the cold (around 10-20 K) swept-up material. The
main aim is to trace the warm gas chemically enriched by the passage of a shock
and to infer the excitation conditions in L1157-B1. A total of 27 lines are
identified in the 555-636 GHz region, down to an average 3 sigma level of 30
mK. The emission is dominated by CO(5-4) and H2O(110-101) transitions, as
discussed by Lefloch et al. (2010). Here we report on the identification of
lines from NH3, H2CO, CH3OH, CS, HCN, and HCO+. The comparison between the
profiles produced by molecules released from dust mantles (NH3, H2CO, CH3OH)
and that of H2O is consistent with a scenario in which water is also formed in
the gas-phase in high-temperature regions where sputtering or grain-grain
collisions are not efficient. The high excitation range of the observed tracers
allows us to infer, for the first time for these species, the existence of a
warm (> 200 K) gas component coexisting in the B1 bow structure with the cold
and hot gas detected from ground