Ferroelectrics, due a number of characteristics, behave as hereditary materials with fractal structure. To model mathematically the systems with so-called memory effects one can use the fractional time-derivatives. The pyro-electric properties of ferroelectrics arouse interest in developing the fractional-differential approach to simulating heat conductivity process.The present study deals with development and numerical implementation of fractal heat conductivity model for hereditary materials using the concepts of fractional-differential calculus applied to the simulation of intensive heating processes in ferroelectrics.The paper proposes a mathematical model governed through mixed initial-boundary value problem for partial differential equation containing a fractional time-derivative as well as nonlinear temperature dependence on the heat capacity. To solve the problem the computational algorithm was designed which is based on an analog of the Crank – Nicolson finite difference scheme combining with the Grunwald – Letnikov formula for fractional time-derivative approximation. The approximation of Neumann boundary condition is included into the finite difference problem statement using scheme of fictitious mesh points. The total system of linear algebraic equations is solved by sweep method.The designed application program allows one to perform the computer simulation of heat conductivity process in hereditary materials. The model verification was performed for numerical solving test problem with known analytical solution. The results of computational experiments are demonstrated for the example of estimating heat distribution in a typical ferroelectric crystal of TGS (triglycine sulfate) near the temperature of phase transition. The fractional derivative order was approximately evaluated to be ~0.7 at variation of this parameter. We applied the comparison of fractal model implementation results with experimental data related to the time when the ferroelectric crystal is heated to Curie temperature. These findings demonstrate that one needs to use the modified models at the analysis of the field effects arising in hereditary materials.Сегнетоэлектрические материалы по ряду характеристик ведут себя как эредитарные среды с фрактальной структурой. Для математического моделирования систем с эффектом памяти используют дробную производную по времени. Пироэлектрические свойства сегнетоэлектриков обуславливают интерес к развитию дробно-дифференциального подхода к моделированию процесса теплопроводности.Работа посвящена разработке и численной реализации фрактальной модели процесса теплопроводности эредитарных сред на основе концепций дробно-дифференциального исчисления в приложении к описанию процессов интенсивного нагрева сегнетоэлектрических материалов.Предложена математическая модель процесса теплопроводности, формализованная с помощью смешанной начально-граничной задачи для уравнения с частными производными, включающего производную дробного порядка по времени и нелинейную зависимость теплоемкости от температуры. Сконструирован вычислительный алгоритм решения задачи на основе аналога конечно-разностной схемы Кранка – Николсон с использованием формулы Грюнвальда – Летникова для аппроксимации производной дробного порядка по времени. Аппроксимация граничного условия Неймана учитывается в модифицированных уравнениях при переходе от дифференциальной задачи к конечно-разностной на основе введения фиктивных узлов сетки. Итоговая система линейных алгебраических уравнений решается методом прогонки.Разработана прикладная программа, позволяющая проводить компьютерное моделирование процесса теплопроводности для эредитарных сред в одной из частных постановок. Проведена проверка адекватности результатов численного моделирования на тест-задаче. Результаты компьютерного моделирования продемонстрированы для прикладной задачи – оценки температурного распределения в образце типичного сегнетоэлектрика триглицинсульфата при интенсивном, по отношению к температуре фазового перехода, тепловом нагреве. Приближенно оценен порядок дробного дифференцирования (~0.7) на основе сравнения результатов реализации фрактальной модели (при варьировании данного параметра) с экспериментальными данными по оценке времени достижения температуры Кюри. Это свидетельствует о необходимости использования модифицированных моделей при анализе полевых эффектов, возникающих в эредитарных средах