Algorithmic Framework for Frequent Pattern Mining with FP-Tree

Abstract

The FP-tree algorithm is currently one of the fastest approaches to frequent item set mining. Studies have also shown that pattern-growth method is one of the most efficient methods for frequent pattern mining. It is based on a prefix tree representation of the given database of transactions (FP-tree) and can save substantial amounts of memory for storing the database. The basic idea of the FP-growth algorithm can be described as a recursive elimination scheme which is usually achieved in the preprocessing step by deleting all items from the transactions that are not frequent. In this study, a simple framework for mining frequent pattern is presented with FP-tree structure which is an extended prefix-tree structure for mining frequent pattern without candidate generation, and less cost for better understanding of the concept for inexperienced data analysts and other organizations interested in association rule mining. Keywords: Association Rule, Frequent Pattern Mining, Apriori Algorithm, FP-tre

    Similar works