ИЗУЧЕНИЕ СТРУКТУРНЫХ И РАЗМЕРНЫХ СВОЙСТВ СПИННИНГОВАННЫХ ПОРОШКОВ p–Bi0,5Sb1,5Te3, СКОМПАКТИРОВАННЫХ ГОРЯЧИМ ВАКУУМНЫМ ПРЕССОВАНИЕМ И ИСКРОВЫМ ПЛАЗМЕННЫМ СПЕКАНИЕМ

Abstract

P–type thermoelectric Bi0,5Sb1,5Te3 powders were obtained by the melt spinning technique (extremely rapid quenching from the liquid state) and their structural and dimensional characteristics were characterized. The crystallographic group and the lattice parameters of the powders correspond to those for Bi0,5Sb1,5Te3 crystallized in equilibrium conditions which suggests the identity of the crystal structure. The powders were compacted by vacuum hot pressing and spark plasma sintering. We found that the partial axial texture [001] directed along the axis of pressure application could be formed during the compacting of the powders. Temperature dependences of the thermoelectric characteristics of the compacted material were measured in a direction perpendicular to the pressure application axis in the 100—700 K range. It is demonstrated that the compacted samples possess low thermal conductivity while retaining the Seebeck coefficient and the electrical conductivity values comparable to crystallized material; therefore ZT reaches 1,05—1,15 in the 330—350 K range which indicates high prospects of applying these technologies. Получены порошки термоэлектрического материала Bi0,5Sb1,5Te3 p−типа проводимости методом спиннингования расплава (сверхбыстрой закалки из жидкого состояния). Определены их структурные и размерные характеристики. Установленная кристаллографическая группа и параметры решетки порошкового материала соответствуют материалу p−Bi0,5Sb1,5Te3, закристаллизованному в равновесных условиях, что свидетельствует об идентичности их кристаллической структуры. Из порошков методами горячего вакуумного прессования и искрового плазменного спекания скомпактированы образцы. Установлено, что при компактировании спиннингованных порошков p−Bi0,5Sb1,5Te3 возможно возникновение частичной аксиальной текстуры [001], направленной вдоль оси приложения давления. Электрофизические и термоэлектрические свойства образцов измерены в направлении, перпендикулярном к оси приложения давления, в диапазоне температур 100—700 К. Показано, что образцы, приготовленные указанными методами, обладают низкой теплопроводностью, сохраняя при этом значения электропроводности и коэффициента Зеебека, сравнимые с аналогичными величинами для традиционных закристаллизованных материалов. За счет этого термоэлектрическая эффективность ZТ достигает значений 1,05—1,15 при 330— 350 К, что говорит о высокой перспективности применения указанных технологий.

    Similar works