It is a known result by Jacobson that the flux of energy-matter through a
local Rindler horizon is related with the expansion of the null generators in a
way that mirrors the first law of thermodynamics. We extend such a result to a
timelike screen of observers with finite acceleration. Since timelike curves
have more freedom than null geodesics, the construction is more involved than
Jacobson's and few geometrical constraints need to be imposed: the observers'
acceleration has to be constant in time and everywhere orthogonal to the
screen. Moreover, at any given time, the extrinsic curvature of the screen has
to be flat. The latter requirement can be weakened by asking that the extrinsic
curvature, if present at the beginning, evolves in time like on a cone and just
rescales proportionally to the expansion.Comment: 8+1 pages, final versio