Symmetries of the finite Heisenberg group represent an important tool for the
study of deeper structure of finite-dimensional quantum mechanics. As is well
known, these symmetries are properly expressed in terms of certain normalizer.
This paper extends previous investigations to composite quantum systems
consisting of two subsystems - qudits - with arbitrary dimensions n and m. In
this paper we present detailed descriptions - in the group of inner
automorphisms of GL(nm,C) - of the normalizer of the Abelian subgroup generated
by tensor products of generalized Pauli matrices of orders n and m. The
symmetry group is then given by the quotient group of the normalizer.Comment: Submitted to J. Phys. A: Math. Theo