Generating quantum entanglement is not only an important scientific endeavor,
but will be essential to realizing quantum-enhanced technologies, in
particular, quantum-enhanced measurements with precision beyond classical
limits. We investigate the heralded generation of multiphoton entanglement for
quantum metrology using a reconfigurable integrated waveguide device in which
projective measurement of auxiliary photons heralds the generation of
path-entangled states. We use four and six-photon inputs, to analyze the
heralding process of two- and four-photon NOON states-a superposition of N
photons in two paths, capable of enabling phase supersensitive measurements at
the Heisenberg limit. Realistic devices will include imperfections; as part of
the heralded state preparation, we demonstrate phase superresolution within our
chip with a state that is more robust to photon loss