An accurate motion model is an important component in modern-day robotic
systems, but building such a model for a complex system often requires an
appreciable amount of manual effort. In this paper we present a motion model
representation, the Dynamic Gaussian Mixture Model (DGMM), that alleviates the
need to manually design the form of a motion model, and provides a direct means
of incorporating auxiliary sensory data into the model. This representation and
its accompanying algorithms are validated experimentally using an 8-legged
kinematically complex robot, as well as a standard benchmark dataset. The
presented method not only learns the robot's motion model, but also improves
the model's accuracy by incorporating information about the terrain surrounding
the robot