We prove precompactness in an orbifold Cheeger-Gromov sense of complete
gradient Ricci shrinkers with a lower bound on their entropy and a local
integral Riemann bound. We do not need any pointwise curvature assumptions,
volume or diameter bounds. In dimension four, under a technical assumption, we
can replace the local integral Riemann bound by an upper bound for the Euler
characteristic. The proof relies on a Gauss-Bonnet with cutoff argument.Comment: 28 pages, final version, to appear in GAF