Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the Sustainable Development Goals

Abstract

Demand for biomass resources will continue to grow as bioenergy is increasingly targeted within energy strategies. Sustainability is a primary issue for large scale bioenergy, with potential to generate both risks and benefits for people, development, natural systems and for climate change – this balance of risks and benefits determining overall sustainability performance. A new sustainability mapping framework is introduced that provides a flexible tool (BSIM) to map the performances of biomass resources, supply chains, technologies and/or whole value chains against 126 indicators of sustainability. Sustainability maps are developed and assessments undertaken for case studies in the UK and Colombia. This research finds sustainability of bioenergy covers far more issues than those targeted within legislation – where land, carbon and biodiversity are prioritised. Mapping sustainability is a valuable tool to identify the leading risks and benefits to enable targeted actions to mitigate risks and to maximise and promote benefits. Mapping sustainability at different resolutions and analysing the trade-offs enables greater rationalisation of potential risks through also identifying the potential broader benefits gained. Bioenergy is intrinsically linked to the SDGs more so than other renewable technologies and should be used as a mechanism to drive sustainable development

    Similar works