We study the dynamical spin susceptibility of a correlated d-wave
superconductor (dSC) in the presence of disorder, using an unrestricted
Hartree-Fock approach. This model provides a concrete realization of the notion
that disorder slows down spin fluctuations, which eventually "freeze out". The
evolution of disorder-induced spectral weight transfer agrees qualitatively
with experimental observations on underdoped cuprate superconductors. For
sufficiently large disorder concentrations, static spin density wave (SDW)
order is created when droplets of magnetism nucleated by impurities overlap. We
also study the disordered stripe state coexisting with a dSC and compare its
magnetic fluctuation spectrum to that of the disorder-generated SDW phase.Comment: 5 pages, 4 figure