Abstract

In Hele-Shaw flows at vanishing surface tension, the boundary of a viscous fluid develops cusp-like singularities. In recent papers [1, 2] we have showed that singularities trigger viscous shocks propagating through the viscous fluid. Here we show that the weak solution of the Hele-Shaw problem describing viscous shocks is equivalent to a semiclassical approximation of a special real solution of the Painleve I equation. We argue that the Painleve I equation provides an integrable deformation of the Hele-Shaw problem which describes flow passing through singularities. In this interpretation shocks appear as Stokes level-lines of the Painleve linear problem.Comment: A more detailed derivation is include

    Similar works

    Full text

    thumbnail-image