This paper aims to explore the inherent connection among Heisenberg groups,
quantum Fourier transform and (quasiprobability) distribution functions.
Distribution functions for continuous and finite quantum systems are examined
first as a semiclassical approach to quantum probability distribution. This
leads to studying certain functionals of a pair of "conjugate" observables,
connected via the quantum Fourier transform. The Heisenberg groups emerge
naturally from this study and we take a rapid look at their representations.
The quantum Fourier transform appears as the intertwining operator of two
equivalent representation arising out of an automorphism of the group.
Distribution functions correspond to certain distinguished sets in the group
algebra. The marginal properties of a particular class of distribution
functions (Wigner distributions) arise from a class of automorphisms of the
group algebra of the Heisenberg group. We then study the reconstruction of
Wigner function from the marginal distributions via inverse Radon transform
giving explicit formulas. We consider applications of our approach to quantum
information processing and quantum process tomography.Comment: 39 page