research

Optimized puncturing distributions for irregular non-binary LDPC codes

Abstract

In this paper we design non-uniform bit-wise puncturing distributions for irregular non-binary LDPC (NB-LDPC) codes. The puncturing distributions are optimized by minimizing the decoding threshold of the punctured LDPC code, the threshold being computed with a Monte-Carlo implementation of Density Evolution. First, we show that Density Evolution computed with Monte-Carlo simulations provides accurate (very close) and precise (small variance) estimates of NB-LDPC code ensemble thresholds. Based on the proposed method, we analyze several puncturing distributions for regular and semi-regular codes, obtained either by clustering punctured bits, or spreading them over the symbol-nodes of the Tanner graph. Finally, optimized puncturing distributions for non-binary LDPC codes with small maximum degree are presented, which exhibit a gap between 0.2 and 0.5 dB to the channel capacity, for punctured rates varying from 0.5 to 0.9.Comment: 6 pages, ISITA1

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016