slides

Effects of Spin Fluctuations and Anomalous Thermal Expansion of delta-Plutonium

Abstract

We suggest a model for the magnetic dynamics of - plutonium and its alloys in order to show that the dynamical fluctuations of the magnetization density, or spin fluctuations, may be responsible for the anomalies of their observed thermal expansion. We show that due to strong magneto-elastic coupling, spin fluctuations may essentially contribute to the volume strain by giving a negative magneto-volume contribution that is proportional to the squared local magnetic moment and the magnetic Gruneisen constant which is negative in - plutonium. In the presented model, the local magnetic moment increases as the temperature rises, resulting in the interplay between the positive contributions to the volume strain from the lattice and the negative contribution from spin fluctuations, and finally leads to the Invar anomaly or to the negative coefficient of thermal expansion. Our results agree closely with the measured thermal expansion data for Pu-Ga alloys

    Similar works

    Full text

    thumbnail-image

    Available Versions