research

Prizing on Paths: A PTAS for the Highway Problem

Abstract

In the highway problem, we are given an n-edge line graph (the highway), and a set of paths (the drivers), each one with its own budget. For a given assignment of edge weights (the tolls), the highway owner collects from each driver the weight of the associated path, when it does not exceed the budget of the driver, and zero otherwise. The goal is choosing weights so as to maximize the profit. A lot of research has been devoted to this apparently simple problem. The highway problem was shown to be strongly NP-hard only recently [Elbassioni,Raman,Ray-'09]. The best-known approximation is O(\log n/\log\log n) [Gamzu,Segev-'10], which improves on the previous-best O(\log n) approximation [Balcan,Blum-'06]. In this paper we present a PTAS for the highway problem, hence closing the complexity status of the problem. Our result is based on a novel randomized dissection approach, which has some points in common with Arora's quadtree dissection for Euclidean network design [Arora-'98]. The basic idea is enclosing the highway in a bounding path, such that both the size of the bounding path and the position of the highway in it are random variables. Then we consider a recursive O(1)-ary dissection of the bounding path, in subpaths of uniform optimal weight. Since the optimal weights are unknown, we construct the dissection in a bottom-up fashion via dynamic programming, while computing the approximate solution at the same time. Our algorithm can be easily derandomized. We demonstrate the versatility of our technique by presenting PTASs for two variants of the highway problem: the tollbooth problem with a constant number of leaves and the maximum-feasibility subsystem problem on interval matrices. In both cases the previous best approximation factors are polylogarithmic [Gamzu,Segev-'10,Elbassioni,Raman,Ray,Sitters-'09]

    Similar works

    Full text

    thumbnail-image

    Available Versions