Particle production due to external fields (electric, chromo-electric or
gravitational) requires evolving an initial state through an interaction with a
time-dependent background, with the rate being computed from a Bogoliubov
transformation between the in and out vacua. When the background fields have
temporal profiles with sub-structure, a semiclassical analysis of this problem
confronts the full subtlety of the Stokes phenomenon: WKB solutions are only
local, while the production rate requires global information. Incorporating the
Stokes phenomenon, we give a simple quantitative explanation of the recently
computed [Phys. Rev. Lett. 102, 150404 (2009)] oscillatory momentum spectrum of
e+e- pairs produced from vacuum subjected to a time-dependent electric field
with sub-cycle laser pulse structure. This approach also explains naturally why
for spinor and scalar QED these oscillations are out of phase.Comment: 5 pages, 4 figs.; v2 sign typo corrected, version to appear in PR