Effect of negative middle ear pressure and compensated pressure on wideband absorbance and otoacoustic emissions in children

Abstract

Objective: This study investigated pressurized transient evoked otoacoustic emission (TEOAE) responses and wideband absorbance (WBA) in healthy ears and ears with negative middle ear pressure (NMEP).Method: In this cross-sectional study, TEOAE amplitude, signal-to-noise ratio, and WBA were measured at ambient and tympanometric peak pressure (TPP) in 36 ears from 25 subjects with healthy ears (age range: 3.1-13.0 years) and 88 ears from 76 patients with NMEP (age range: 2.0-13.1 years), divided into 3 groups based on NMEP (Group 1 with TPP between -101 and -200 daPa, Group 2 with TPP between -201 and -300 daPa, and Group 3 with TPP between -301 and -400 daPa).Results: Mean TEOAE amplitude, signal-to-noise ratio, and WBA were increased at TPP relative to that measured at ambient pressure between 0.8 and 1.5 kHz. Further decrease in TPP beyond -300 daPa did not result in further increases in the mean TEOAE or WBA at TPP. The correlation between TEOAE and WBA was dependent on the frequency, pressure conditions, and subject group. There was no difference in pass rates between the 2 pressure conditions for the control group, while the 3 NMEP groups demonstrated an improvement in pass rates at TPP. With pressurization, the false alarm rate for TEOAE due to NMEP was reduced by 17.8% for NMEP Group 1, 29.2% for NMEP Group 2, and 15.8% for NMEP Group 3.Conclusion: Results demonstrated the feasibility and clinical benefits of measuring TEOAE and WBA under pressurized conditions. Pressurized TEOAE and WBA should be used for assessment of ears with NMEP in hearing screening programs to reduce false alarm rates

    Similar works

    Full text

    thumbnail-image