We present the solution of a linear Restricted Solid--on--Solid (RSOS) model
confined to a slit. We include a field-like energy, which equivalently weights
the area under the interface, and also include independent interaction terms
with both walls. This model can also be mapped to a lattice polymer model of
Motzkin paths in a slit interacting with both walls and including an osmotic
pressure. This work generalises previous work on the RSOS model in the
half-plane which has a solution that was shown recently to exhibit a novel
mathematical structure involving basic hypergeometric functions 3ϕ2.
Because of the mathematical relationship between half-plane and slit this work
hence effectively explores the underlying q-orthogonal polynomial structure
to that solution. It also generalises two other recent works: one on Dyck paths
weighted with an osmotic pressure in a slit and another concerning Motzkin
paths without an osmotic pressure term in a slit