Assessing the effects of chemical mixtures using a Bayesian network-relative risk model (BN-RRM) integrating adverse outcome pathways (AOPs) in three Puget Sound watersheds

Abstract

Chemical mixtures are difficult to assess at the individual level, but more challenging at the population level. There is still little insight of the molecular pathway for numerous chemical mixtures. We have conducted a regional-scale ecological risk assessment by evaluating the effects chemical mixtures to populations with a Bayesian Network- Relative Risk Model (BN-RRM) incorporating a molecular pathway. We used this BN-RRM framework in a case study with organophosphate pesticide (OP) mixtures (diazinon, chlorpyrifos, and malathion) in three watersheds (Lower Skagit, Nooksack, Cedar) in the state of Washington (USA). Puget Sound Chinook salmon (Oncorhynchus tshawytscha) Evolutionary Significant Units (ESU) were chosen as population endpoints. These populations are a valuable ecosystem service in the Pacific Northwest because they benefit the region as a species that provide protection of biodiversity and are spiritually and culturally treasured by the local tribes. Laetz et al. (2009, 2013) indicated that organophosphate pesticide mixtures act synergistically to salmon and impair neurological molecular activity which leads to a change in swimming behavior and mortality, which then leads to changes in population productivity. Exposure response curves were generated for OP mixtures to connect the molecular pathway. Ecological stressors from dissolved oxygen and temperature were also included in our risk analysis. Synergism within the mixtures as well as increasing temperature and decreasing dissolve oxygen content lead to increasing risk to Puget Sound Chinook salmon populations. This research demonstrates a probabilistic approach with a multiple stressor framework to estimate the effects of mixtures through a molecular pathway and predict impacts to these valuable ecosystem services

    Similar works