One Plus One Equals Three: The Synergistic Effects Of Crop Rotation On Soil Fertility And Plant Nutrition

Abstract

Corn grown under annual corn-soybean crop rotation has greater accumulation of certain mineral nutrients and higher yields than corn grown in monoculture. This study was conducted to determine if complex crop rotations (with legumes in the rotation as alfalfa hay as well as soybean row crops) and different levels of agriculture chemical input affect soil fertility and corn mineral nutrient composition. The effects of crop rotation [monoculture corn, corn-soybean 2-yr rotation, corn-soybean- wheat underseeded with alfalfa-alfalfa 4-yr rotation] and input level [high input (fertilizer application for 8.15 Mg ha-1 yield goal, prophylactic herbicide and insecticide application, fall moldboard plow/spring disk and cultivation operations), intermediate input (fertilizer application for 5.33 Mg ha-1 yield goal, pesticide applications based upon pest survey and IPM principles, fall chisel plow/spring disk and cultivation operations), and low input (no fertilizer, herbicide, or insecticide applications, fall chisel plow/spring disk and cultivation operations)] on soil fertility (pH, organic matter, NO3-N, P, K, and total N) and on corn shoot dry weight, mineral nutrient (N, P, Ca, Mg) concentration and accumulation at tassel stage of development were investigated at Brookings, SD. Soil samples taken at the V6 stage of corn development indicated that crop rotation treatments reduced soil pH, increased soil NO3-N level, and decreased soil P level when compared to corn monoculture. Shoots of plants grown under either 2-yr rotation intermediate input or 4-yr rotation no input treatments had greater dry weight, as well as greater P, Ca, and Mg accumulation than these same input treatments in other rotations. These results demonstrate a beneficial effect of crop rotation upon soil fertility and corn mineral nutrition. The results of this experiment are discussed in terms of nutrient synergisms whereby nutrient absorption proceeds at a faster rate than dry weight accumulation

    Similar works