research

Relativistic Comparison Theorems

Abstract

Comparison theorems are established for the Dirac and Klein--Gordon equations. We suppose that V^{(1)}(r) and V^{(2)}(r) are two real attractive central potentials in d dimensions that support discrete Dirac eigenvalues E^{(1)}_{k_d\nu} and E^{(2)}_{k_d\nu}. We prove that if V^{(1)}(r) \leq V^{(2)}(r), then each of the corresponding discrete eigenvalue pairs is ordered E^{(1)}_{k_d\nu} \leq E^{(2)}_{k_d\nu}. This result generalizes an earlier more restrictive theorem that required the wave functions to be node free. For the the Klein--Gordon equation, similar reasoning also leads to a comparison theorem provided in this case that the potentials are negative and the eigenvalues are positive.Comment: 6 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019