Comparison theorems are established for the Dirac and Klein--Gordon
equations. We suppose that V^{(1)}(r) and V^{(2)}(r) are two real attractive
central potentials in d dimensions that support discrete Dirac eigenvalues
E^{(1)}_{k_d\nu} and E^{(2)}_{k_d\nu}. We prove that if V^{(1)}(r) \leq
V^{(2)}(r), then each of the corresponding discrete eigenvalue pairs is ordered
E^{(1)}_{k_d\nu} \leq E^{(2)}_{k_d\nu}. This result generalizes an earlier more
restrictive theorem that required the wave functions to be node free. For the
the Klein--Gordon equation, similar reasoning also leads to a comparison
theorem provided in this case that the potentials are negative and the
eigenvalues are positive.Comment: 6 page