The alteration of scavenging communities can reduce basic ecosystem services and increase risks to human and wildlife health. Recent work demonstrated that scavenging communities in agricultural landscapes are extremely efficient: superabundant mesopredators sequestered system energy by dominating scavenging activity. To explore how the disturbance of these communities affects the stability of carrion removal as an ecosystem function, we experimentally manipulated a scavenging community within an agricultural landscape by reducing the abundance of the dominant scavenger, raccoons Procyon lotor. We then monitored the fates of 676 mouse Mus musculus carcasses placed in 13 control and 13 removal woodlots from June 2007 β May 2008. The diversity of vertebrate scavengers did not change between control and removal woodlots and scavenging by invertebrates was unaffected by our experiment. Although Virginia opossums Didelphis virginiana and other scavengers exhibited a functional response when raccoons were reduced in abundance, the increases did not change the proportional allocation of carcasses among scavengers. Finally, the reduced abundance of a major scavenger affected system efficiency. More carcasses remained un-scavenged at the end of trials in removal woodlots than in control woodlots. This experiment demonstrates the vulnerability of a critical ecosystem service, carrion removal, to perturbations of the scavenging community and serves to highlight the method by which scavenger communities may respond to perturbations