In this article, we present a greedy algorithm based on a tensor product
decomposition, whose aim is to compute the global minimum of a strongly convex
energy functional. We prove the convergence of our method provided that the
gradient of the energy is Lipschitz on bounded sets. The main interest of this
method is that it can be used for high-dimensional nonlinear convex problems.
We illustrate this method on a prototypical example for uncertainty propagation
on the obstacle problem.Comment: 36 pages, 9 figures, accepted in Mathematical Models and Methods for
Applied Science