research

A doubly exponential upper bound on noisy EPR states for binary games

Abstract

This paper initiates the study of a class of entangled games, mono-state games, denoted by (G,ψ)(G,\psi), where GG is a two-player one-round game and ψ\psi is a bipartite state independent of the game GG. In the mono-state game (G,ψ)(G,\psi), the players are only allowed to share arbitrary copies of ψ\psi. This paper provides a doubly exponential upper bound on the copies of ψ\psi for the players to approximate the value of the game to an arbitrarily small constant precision for any mono-state binary game (G,ψ)(G,\psi), if ψ\psi is a noisy EPR state, which is a two-qubit state with completely mixed states as marginals and maximal correlation less than 11. In particular, it includes (1−ϵ)∣Ψ⟩⟨Ψ∣+ϵI22⊗I22(1-\epsilon)|\Psi\rangle\langle\Psi|+\epsilon\frac{I_2}{2}\otimes\frac{I_2}{2}, an EPR state with an arbitrary depolarizing noise ϵ>0\epsilon>0.The structure of the proofs is built the recent framework about the decidability of the non-interactive simulation of joint distributions, which is completely different from all previous optimization-based approaches or "Tsirelson's problem"-based approaches. This paper develops a series of new techniques about the Fourier analysis on matrix spaces and proves a quantum invariance principle and a hypercontractive inequality of random operators. This novel approach provides a new angle to study the decidability of the complexity class MIP∗^*, a longstanding open problem in quantum complexity theory.Comment: The proof of Lemma C.9 is corrected. The presentation is improved. Some typos are correcte

    Similar works