Challenges with accurate tracking of oil spill trajectories within Puget Sound

Abstract

Risk of oil spill within the Salish Sea has recently been highlighted by the construction of Canada’s Kinder Morgan Trans-Mountain Expansion Project, which is expected to increase oil tanker traffic through the Strait of Juan de Fuca by over 400 tankers per year. Complex circulation patterns in this high-energy fjord complicates the tracking of spills to aid both prevention and response. PNNL’s Salish Sea Model has been refined for over a decade and represents the leading hydrodynamic model for the region. In a recent project, the Salish Sea Model was paired with the National Oceanic and Atmospheric Administration’s General NOAA Operational Modeling Environment (GNOME) and the National Energy Technology Laboratory’s Blowout and Spill Occurrence Model (BLOSOM) to recreate the 2003 Point Wells oil spill near Seattle, Washington. This was the first time that GNOME and BLOSOM were directly compared, highlighting differences in methodology and practice. Yet this was also an opportunity to optimize the Salish Sea Model for surface oil spills, understanding the specific challenges associated with the Salish Sea region. The challenges have been overcome and the Pt. Wells spill trajectory has been successfully reproduced. This project showcased the importance of correct hydrodynamics in a high-energy, enclosed estuary. Building on this experience equips the Salish Sea Model to inform planning and response activities that can protect vulnerable animals and habitat in this pristine environment

    Similar works