research

Bond-operators and triplon analysis for spin-S dimer antiferromagnets

Abstract

The mean-field triplon analysis is developed for spin-S quantum antiferromagnets with dimerized ground states. For the spin-1/2 case, it reduces to the well known bond-operator mean-field theory. It is applied to a coupled-dimer model on square lattice, and to a model on honeycomb lattice with spontaneous dimerization in the ground state. Different phases in the ground state are investigated as a function of spin. It is found that under suitable conditions (such as strong frustration) a quantum ground state (dimerized singlet phase in the present study) can survive even in the limit SS\rightarrow \infty. Two quick extensions of this representation are also presented. In one case, it is extended to include the quintet states. In another, a similar representation is worked out on a square plaquette. A convenient procedure for evaluating the total-spin eigenstates for a pair of quantum spins is presented in the appendix.Comment: 15 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions