Automatically detecting discourse segments is an important preliminary step
towards full discourse parsing. Previous research on discourse segmentation
have relied on the assumption that elementary discourse units (EDUs) in a
document always form a linear sequence (i.e., they can never be nested).
Unfortunately, this assumption turns out to be too strong, for some theories of
discourse like SDRT allows for nested discourse units. In this paper, we
present a simple approach to discourse segmentation that is able to produce
nested EDUs. Our approach builds on standard multi-class classification
techniques combined with a simple repairing heuristic that enforces global
coherence. Our system was developed and evaluated on the first round of
annotations provided by the French Annodis project (an ongoing effort to create
a discourse bank for French). Cross-validated on only 47 documents (1,445
EDUs), our system achieves encouraging performance results with an F-score of
73% for finding EDUs.Comment: published at LREC 201