research

Euler Integration of Gaussian Random Fields and Persistent Homology

Abstract

In this paper we extend the notion of the Euler characteristic to persistent homology and give the relationship between the Euler integral of a function and the Euler characteristic of the function's persistent homology. We then proceed to compute the expected Euler integral of a Gaussian random field using the Gaussian kinematic formula and obtain a simple closed form expression. This results in the first explicitly computable mean of a quantitative descriptor for the persistent homology of a Gaussian random field.Comment: 21 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions