Optical Signatures of Spin-Orbit Exciton in Bandwidth-Controlled Sr\u3csub\u3e2\u3c/sub\u3eIrO\u3csub\u3e4\u3c/sub\u3e Epitaxial Films via High-Concentration Ca and Ba Doping

Abstract

We have investigated the electronic and optical properties of (Sr1−xCax)2IrO4 (x = 0–0.375) and (Sr1−yBay)2IrO4 (y = 0–0.375) epitaxial thin films, in which the bandwidth is systematically tuned via chemical substitutions of Sr ions by Ca and Ba. Transport measurements indicate that the thin-film series exhibits insulating behavior, similar to the Jeff = 1/2 spin-orbit Mott insulator Sr2IrO4. As the average A-site ionic radius increases from (Sr1−xCax)2IrO4 to (Sr1−yBay)2IrO4, optical conductivity spectra in the near-infrared region shift to lower energies, which cannot be explained by the simple picture of well-separated Jeff = 1/2 and Jeff = 3/2 bands. We suggest that the two-peak-like optical conductivity spectra of the layered iridates originates from the overlap between the optically forbidden spin-orbit exciton and the intersite optical transitions within the Jeff = 1/2 band. Our experimental results are consistent with this interpretation as implemented by a multiorbital Hubbard model calculation: namely, incorporating a strong Fano-like coupling between the spin-orbit exciton and intersite d−d transitions within the Jeff = 1/2 band

    Similar works