research

Million Atom Electronic Structure and Device Calculations on Peta-Scale Computers

Abstract

Semiconductor devices are scaled down to the level which constituent materials are no longer considered continuous. To account for atomistic randomness, surface effects and quantum mechanical effects, an atomistic modeling approach needs to be pursued. The Nanoelectronic Modeling Tool (NEMO 3-D) has satisfied the requirement by including emprical sp3s∗sp^{3}s^{*} and sp3d5s∗sp^{3}d^{5}s^{*} tight binding models and considering strain to successfully simulate various semiconductor material systems. Computationally, however, NEMO 3-D needs significant improvements to utilize increasing supply of processors. This paper introduces the new modeling tool, OMEN 3-D, and discusses the major computational improvements, the 3-D domain decomposition and the multi-level parallelism. As a featured application, a full 3-D parallelized Schr\"odinger-Poisson solver and its application to calculate the bandstructure of δ\delta doped phosphorus(P) layer in silicon is demonstrated. Impurity bands due to the donor ion potentials are computed.Comment: 4 pages, 6 figures, IEEE proceedings of the 13th International Workshop on Computational Electronics, Tsinghua University, Beijing, May 27-29 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019