research

Backward blow-up estimates and initial trace for a parabolic system of reaction-diffusion

Abstract

In this article we study the positive solutions of the parabolic semilinear system of competitive type \left\{\begin{array} [c]{c}% u_{t}-\Delta u+v^{p}=0, v_{t}-\Delta v+u^{q}=0, \end{array} \right. in Ω×(0,T)\Omega\times\left(0,T\right) , where Ω\Omega is a domain of RN,\mathbb{R}^{N}, and p,q>0,p,q>0, pq1.pq\neq1. Despite of the lack of comparison principles, we prove local upper estimates in the superlinear case pq>1pq>1 of the form u(x,t)Ct(p+1)/(pq1),v(x,t)Ct(q+1)/(pq1) u(x,t)\leqq Ct^{-(p+1)/(pq-1)},\qquad v(x,t)\leqq Ct^{-(q+1)/(pq-1)}% in ω×(0,T1),\omega\times\left(0,T_{1}\right) , for any domain ωΩ\omega \subset\subset\Omega and T1(0,T),T_{1}\in\left(0,T\right) , and C=C(N,p,q,T1C=C(N,p,q,T_{1}% ,\omega). For p,q>1,p,q>1, we prove the existence of an initial trace at time 0, which is a Borel measure on Ω.\Omega. Finally we prove that the punctual singularities at time 00 are removable when $p,q\geqq1+2/N

    Similar works