Connexin 26 (Cx26) and connexin 30 (Cx30) form gap junction channels that allow the intercellular diffusion of the Ca2+ mobilizing second messenger IP3. They also form hemichannels that release ATP from the endolymphatic surface of cochlear supporting and epithelial cells. Released ATP in turn activates G-protein coupled P2Y2 and P2Y4 receptors, PLC-dependent generation of IP3, release of Ca2+ from intracellular stores, permitting the regenerative propagation of intercellular Ca2+ signals.
In the course of this work, we found that cochlear non-sensory cells of the greater and lesser epithelial ridge (GER and LER, respectively) share the same PLC- and IP3R-dependent signal transduction cascade activated by ATP. In addition, we demonstrated that ATP-dependent Ca2+ signaling activity in cochlear non-sensory cells is spatially graded from the apex to the base of the cochlea during the first postnatal week. Ca2+ signaling under these conditions depends on inositol-1,4,5-trisphosphate generation from phospholipase C (PLC)-dependent hydrolysis of PI(4,5)P(2). Thus we analyzed mice with defective expression of PIPKIγ and found that (i) this enzyme is essential for the acquisition of hearing; (ii) it is primarily responsible for the synthesis of the receptor-regulated PLC-sensitive PI(4,5)P(2) pool in the cell syncytia that supports auditory hair cells and; (iii) spatially graded impairment of the PIP2-IP3-Ca2+ signaling pathway in cochlear non-sensory cells affects the level of gap junction coupling. Vice versa, we found defective gap junction coupling and intercellular IP3-dependent Ca2+ signaling the cochlea of mice with targeted ablation Cx26 or Cx30, as well as in mice knock in for a point mutation (Cx30T5M) associated with human congenital deafness. Altogether, our findings link bidirectionally defective hearing acquisition to Ca2+ signaling impairment and decreased biochemical coupling in the developing cochlea. Transduction of connexin deficient cochlear cultures with a bovine adeno associated virus vectors encoding Cx26 or Cx30 restored protein expression, rescued both gap junction coupling and Ca2+ signaling.
Based on this work, we conclude that in vivo connexin gene delivery to the inner ear is a route worth exploring to rescue hearing function in mouse models of deafness and, in future, may lead to the development of therapeutic interventions in humans