A Physics-based prognostics approach for Tidal Turbines

Abstract

This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordTidal Stream Turbines (TST) have the potential to become an important part of the sustainable energy mix. One of the main hurdles to commercialization is the reliability of the turbine components. Literature from the Offshore Wind sector has shown that the drive train and particularly the Pitch System (PS) are areas of frequent failures and downtime. The Tidal energy sector has much higher device reliability requirements than the wind industry because of the inaccessibility of the turbines. For Tidal energy to become commercially viable it is therefore crucial to make accurate reliability assessments to assist component design choices and to inform maintenance strategy. This paper presents a physics-based prognostics approach for the reliability assessment of Tidal Stream Turbines (TST) during operation. Measured tidal flow data is fed into a turbine hydrodynamic model to generate a synthetic loading regime which is then used in a Physics of Failure model to predict component Remaining Useful Life (RUL). The approach is demonstrated for the failure critical Pitch System (PS) bearing unit of a notional horizontal axis TST. It is anticipated that the approach developed here will enable device/project developers, technical consultants and third party certifiers to undertake robust reliability assessments both during turbine design and operational stages.ETIEngineering and Physical Sciences Research Council (EPSRC

    Similar works