A mechanism describing state reduction dynamics in relativistic quantum field
theory is outlined. The mechanism involves nonlinear stochastic modifications
to the standard description of unitary state evolution and the introduction of
a relativistic field in which a quantized degree of freedom is associated to
each point in spacetime. The purpose of this field is to mediate in the
interaction between classical stochastic influences and conventional quantum
fields. The equations of motion are Lorentz covariant, frame independent, and
do not result in divergent behavior. It is shown that the mathematical
framework permits the specification of unambiguous local properties providing a
connection between the model and evidence of real world phenomena. The collapse
process is demonstrated for an idealized example.Comment: 20 pages, 2 figures, replacement with minor correction