Mechanisms of locomotion in microscopic systems are of great interest not
only for technological applications, but also for the sake of understanding,
and potentially harnessing, processes far from thermal equilibrium.
Down-scaling is a particular challenge, and has led to a number of interesting
concepts including thermal ratchet systems and asymmetric swimmers. Here we
present a system which is particularly intriguing, as it is self-assembling and
uses a robust mechanism which can be implemented in various settings. It
consists of small spheres of different size which adhere to each other, and are
subject to an oscillating (zero average) external force eld. An inherent
nonlinearity in the mutual force network leads to force rectication and hence
to locomotion. We present a model that accounts for the observed behaviour and
demonstrates the wide applicability and potential scalability of the concept.Comment: 17 pages, 4 figure