The Universe may harbor relics of the post-inflationary epoch in the form of
a network of self-ordered scalar fields. Such fossils, while consistent with
current cosmological data at trace levels, may leave too weak an imprint on the
cosmic microwave background and the large-scale distribution of matter to allow
for direct detection. The non-Gaussian statistics of the density perturbations
induced by these fields, however, permit a direct means to probe for these
relics. Here we calculate the bispectrum that arises in models of self-ordered
scalar fields. We find a compact analytic expression for the bispectrum,
evaluate it numerically, and provide a simple approximation that may be useful
for data analysis. The bispectrum is largest for triangles that are aligned
(have edges k1≃2k2≃2k3) as opposed to the local-model
bispectrum, which peaks for squeezed triangles (k1≃k2≫k3), and
the equilateral bispectrum, which peaks at k1≃k2≃k3. We
estimate that this non-Gaussianity should be detectable by the Planck satellite
if the contribution from self-ordering scalar fields to primordial
perturbations is near the current upper limit.Comment: 11 pages, 1 figur