The influence of electron-phonon interaction on magnetotransport in
two-dimensional electron systems under microwave irradiation is studied
theoretically. Apart from the phonon-induced resistance oscillations which
exist in the absence of microwaves, the magnetoresistance of irradiated samples
contains oscillating contributions due to electron scattering on both
impurities and acoustic phonons. The contributions due to electron-phonon
scattering are described as a result of the interference of phonon-induced and
microwave-induced resistance oscillations. In addition, microwave heating of
electrons leads to a special kind of phonon-induced oscillations. The relative
strength of different contributions and their dependence on parameters are
discussed. The interplay of numerous oscillating contributions suggests a
peculiar magnetoresistance picture in high-mobility layers at the temperatures
when electron-phonon scattering becomes important.Comment: 12 pages, 2 figure