In this paper, we study inference for high-dimensional data characterized by
small sample sizes relative to the dimension of the data. In particular, we
provide an infinite-dimensional framework to study statistical models that
involve situations in which (i) the number of parameters increase with the
sample size (that is, allowed to be random) and (ii) there is a possibility of
missing data. Under a variety of tail conditions on the components of the data,
we provide precise conditions for the joint consistency of the estimators of
the mean. In the process, we clarify and improve some of the recent consistency
results that appeared in the literature. An important aspect of the work
presented is the development of asymptotic normality results for these models.
As a consequence, we construct different test statistics for one-sample and
two-sample problems concerning the mean vector and obtain their asymptotic
distributions as a corollary of the infinite-dimensional results. Finally, we
use these theoretical results to develop an asymptotically justifiable
methodology for data analyses. Simulation results presented here describe
situations where the methodology can be successfully applied. They also
evaluate its robustness under a variety of conditions, some of which are
substantially different from the technical conditions. Comparisons to other
methods used in the literature are provided. Analyses of real-life data is also
included.Comment: Published in at http://dx.doi.org/10.1214/09-AOS718 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org