I have investigated the structural and dynamic properties of water by
performing a series of molecular dynamic simulations in the range of
temperatures from 213 K to 360 K, using the Simple Point Charge-Extended
(SPC/E) model. I performed isobaric-isothermal simulations (1 bar) of 1185
water molecules using the GROMACS package. I quantified the structural
properties using the oxygen-oxygen radial distribution functions, order
parameters, and the hydrogen bond distribution functions, whereas, to analyze
the dynamic properties I studied the behavior of the history-dependent bond
correlation functions and the non-Gaussian parameter alpha_2(t) of the mean
square displacement of water molecules. When the temperature decreases, the
translational (tau) and orientational (Q) order parameters are linearly
correlated, and both increase indicating an increasing structural order in the
systems. The probability of occurrence of four hydrogen bonds and Q both have a
reciprocal dependence with T, though the analysis of the hydrogen bond
distributions permits to describe the changes in the dynamics and structure of
water more reliably. Thus, an increase on the caging effect and the occurrence
of long-time hydrogen bonds occur below 293 K, in the range of temperatures in
which predominates a four hydrogen bond structure in the system.Comment: 7 pages, 6 figure