We analyse the problem of solving Boolean equation systems through the use of
structure graphs. The latter are obtained through an elegant set of
Plotkin-style deduction rules. Our main contribution is that we show that
equation systems with bisimilar structure graphs have the same solution. We
show that our work conservatively extends earlier work, conducted by Keiren and
Willemse, in which dependency graphs were used to analyse a subclass of Boolean
equation systems, viz., equation systems in standard recursive form. We
illustrate our approach by a small example, demonstrating the effect of
simplifying an equation system through minimisation of its structure graph