research

Specific heat and entropy of NN-body nonextensive systems

Abstract

We have studied finite NN-body DD-dimensional nonextensive ideal gases and harmonic oscillators, by using the maximum-entropy methods with the qq- and normal averages (qq: the entropic index). The validity range, specific heat and Tsallis entropy obtained by the two average methods are compared. Validity ranges of the qq- and normal averages are 0qL0 q_L, respectively, where qU=1+(ηDN)1q_U=1+(\eta DN)^{-1}, qL=1(ηDN+1)1q_L=1-(\eta DN+1)^{-1} and η=1/2\eta=1/2 (η=1\eta=1) for ideal gases (harmonic oscillators). The energy and specific heat in the qq- and normal averages coincide with those in the Boltzmann-Gibbs statistics, % independently of qq, although this coincidence does not hold for the fluctuation of energy. The Tsallis entropy for Nq11N |q-1| \gg 1 obtained by the qq-average is quite different from that derived by the normal average, despite a fairly good agreement of the two results for q11|q-1 | \ll 1. It has been pointed out that first-principles approaches previously proposed in the superstatistics yield additiveadditive NN-body entropy (S(N)=NS(1)S^{(N)}= N S^{(1)}) which is in contrast with the nonadditivenonadditive Tsallis entropy.Comment: 27 pages, 8 figures: augmented the tex

    Similar works

    Full text

    thumbnail-image

    Available Versions