We study the conductivity of disordered zigzag graphene nanoribbons in the
incoherent regime by using the Boltzmann equation approach. The band structure
of zigzag nanoribbons contains two energy valleys, and each valley has an
excess one-way channel. The crucial point is that the numbers of conducting
channels for two propagating directions are imbalanced in each valley due to
the presence of an excess one-way channel. It was pointed out that as a
consequence of this imbalance, a perfectly conducting channel is stabilized in
the coherent regime if intervalley scattering is absent. We show that even in
the incoherent regime, the conductivity is anomalously enhanced if intervalley
scattering is very weak. Particularly, in the limit of no intervalley
scattering, the dimensionless conductance approaches to unity with increasing
ribbon length as if there exists a perfectly conducting channel. We also show
that anomalous valley polarization of electron density appears in the presence
of an electric field.Comment: 10 pages, 3 figure