We study a novel class of mechanism design problems in which the outcomes are
constrained by the payments. This basic class of mechanism design problems
captures many common economic situations, and yet it has not been studied, to
our knowledge, in the past. We focus on the case of procurement auctions in
which sellers have private costs, and the auctioneer aims to maximize a utility
function on subsets of items, under the constraint that the sum of the payments
provided by the mechanism does not exceed a given budget. Standard mechanism
design ideas such as the VCG mechanism and its variants are not applicable
here. We show that, for general functions, the budget constraint can render
mechanisms arbitrarily bad in terms of the utility of the buyer. However, our
main result shows that for the important class of submodular functions, a
bounded approximation ratio is achievable. Better approximation results are
obtained for subclasses of the submodular functions. We explore the space of
budget feasible mechanisms in other domains and give a characterization under
more restricted conditions