Recent studies show that large negative ion densities exist in plasma processing discharges, including those of weakly electronegative gases such as SiH{sub 4} and CF{sub 4}. Also, there is strong evidence that the negative ions could be the precursors for particulate formation in processing discharges. Even though it is now well established that large concentrations of negative ions exist in processing discharges, and that they play a crucial role in such discharges, the source of such high negative ion densities has not been clarified. In particular, gases like SiH{sub 4} and CH{sub 4}, which are commonly used in processing discharges, attach electrons only weakly in their ground electronic states (see the references). Due to the lack of an alternative mechanism, the origin of large negative ion densities in such weakly electronegative gases has been frequently attributed to electron attachment to radicals (molecular fragments) or other byproducts produced in the discharge. This hypothesis had not been tested in direct electron attachment measurements