Low and mid-latitude coronal holes (CHs) observed on the Sun during the
current solar activity minimum (from September 21, 2006, Carrington rotation
(CR) 2048, until June 26, 2009 (CR 2084)) were analyzed using {\it SOHO}/EIT
and STEREO-A SECCHI EUVI data. From both the observations and Potential Field
Source Surface (PFSS) modeling, we find that the area occupied by CHs inside a
belt of ±40∘ around the solar equator is larger in the current 2007
solar minimum relative to the similar phase of the previous 1996 solar minimum.
The enhanced CH area is related to a recurrent appearance of five persistent
CHs, which survived during 7-27 solar rotations. Three of the CHs are of
positive magnetic polarity and two are negative. The most long-lived CH was
being formed during 2 days and existed for 27 rotations. This CH was associated
with fast solar wind at 1 AU of approximately 620±40 km s−1. The 3D
MHD modeling for this time period shows an open field structure above this CH.
We conclude that the global magnetic field of the Sun possessed a multi-pole
structure during this time period. Calculation of the harmonic power spectrum
of the solar magnetic field demonstrates a greater prevalence of multi-pole
components over the dipole component in the 2007 solar minimum compared to the
1996 solar minimum. The unusual large separation between the dipole and
multi-pole components is due to the very low magnitude of the dipole component,
which is three times lower than that in the previous 1996 solar minimum.Comment: 14 pages, 7 figure