research

Deformations of bordered Riemann surfaces and associahedral polytopes

Abstract

We consider the moduli space of bordered Riemann surfaces with boundary and marked points. Such spaces appear in open-closed string theory, particularly with respect to holomorphic curves with Lagrangian submanifolds. We consider a combinatorial framework to view the compactification of this space based on the pair-of-pants decomposition of the surface, relating it to the well-known phenomenon of bubbling. Our main result classifies all such spaces that can be realized as convex polytopes. A new polytope is introduced based on truncations of cubes, and its combinatorial and algebraic structures are related to generalizations of associahedra and multiplihedra.Comment: 25 pages, 31 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions