Multi-environment field testing to identify stable sources of resistance to charcoal rot (Macrophomina phaseolina) disease in tropical maize germplasm

Abstract

The charcoal rot caused by Macrophomina phaseolina is the devastating component of post flowering stalk rot (PFSR) complex which may cause 25 to 32 % yield loss in maize. Therefore for the first time, the study was carried out with multi-environments screening of 137 inbreds at three and 48 maize hybrids at six environments under artificially created epiphytotics at hot-spot locations to identify stable sources of charcoal rot resistance in Indian maize germplasm. Analysis of variance revealed strong effect of genotype by environment interaction on disease response and therefore indicated its complex nature. The mean disease score was ranging from 2.37 to 7.20 in inbreds, and 3.63 to 6.08 in hybrids. Additive main effects and multiplicative Interactions (AMMI) analysis could identifed, DQL1020, DML339, DML1, DQL1019, CM117-1-1 in inbreds and A-7501, CMH08-287, CMH08-292, BIO-562, and CMH08-350 in hybrids as stable sources of charcoal rot resistance. Each testing site viz., Ludhiana, Hyderabad and Delhi was identified as a separate test environment for screening against charcoal rot disease in India. In this study, AMMI model offers a good tool to assess the stability of genotypes and GGE biplot found an efficient tool to identify the mega environments in multi-environment testing. The identified sources of resistance in inbreds can be used in resistant breeding and hybrids can be recommended for cultivation in charcoal rot disease prone area

    Similar works